Parameterized Counting Algorithms for General Graph Covering Problems

نویسندگان

  • Naomi Nishimura
  • Prabhakar Ragde
  • Dimitrios M. Thilikos
چکیده

We examine the general problem of covering graphs by graphs: given a graph G, a collection P of graphs each on at most p vertices, and an integer r, is there a collection C of subgraphs of G, each belonging to P , such that the removal of the graphs in C from G creates a graph none of whose components have more than r vertices? We can also require that the graphs in C be disjoint (forming a “matching”). This framework generalizes vertex cover, edge dominating set, and minimum maximal matching. In this paper, we examine the parameterized complexity of the counting version of the above general problem. In particular, we show how to count the solutions of size at most k of the covering and matching problems in time O(n·r(pk+r)+2), where n is the number of vertices in G and f is a simple polynomial. In order to achieve the additive relation between the polynomial and the non-polynomial parts of the time complexity of our algorithms, we use the compactor technique, the counting analogue of kernelization for parameterized decision

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Contributions to Parameterized Complexity

This thesis is presented in two parts. In Part One we concentrate on algorithmic aspects of parameterized complexity. We explore ways in which the concepts and algorithmic techniques of parameterized complexity can be fruitfully brought to bear on a (classically) well-studied problem area, that of scheduling problems modelled on partial orderings. We develop efficient and constructive algorithm...

متن کامل

Counting Restricted Homomorphisms via Möbius Inversion over Matroid Lattices

We present a framework for the complexity classification of parameterized counting problems that can be formulated as the summation over the numbers of homomorphisms from small pattern graphs H1, . . . ,H` to a big host graph G with the restriction that the coefficients correspond to evaluations of the Möbius function over the lattice of a graphic matroid. This generalizes the idea of Curticape...

متن کامل

Parameterized Algorithms for Partial Cover Problems

Covering problems are fundamental classical problems in optimization, computer science and complexity theory. Typically an input to these problems is a family of sets over a finite universe and the goal is to cover the elements of the universe with as few sets of the family as possible. The variations of covering problems include well known problems like Set Cover, Vertex Cover, Dominating Set ...

متن کامل

Approximate Counting via Correlation Decay on Planar Graphs

We show for a broad class of counting problems, correlation decay (strong spatial mixing) implies FPTAS on planar graphs. The framework for the counting problems considered by us is the Holant problems with arbitrary constant-size domain and symmetric constraint functions. We define a notion of regularity on the constraint functions, which covers a wide range of natural and important counting p...

متن کامل

Subexponential Algorithms for Partial Cover Problems

Partial Cover problems are optimization versions of fundamental and well studied problems like Vertex Cover and Dominating Set. Here one is interested in covering (or dominating) the maximum number of edges (or vertices) using a given number (k) of vertices, rather than covering all edges (or vertices). In general graphs, these problems are hard for parameterized complexity classes when paramet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005